Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2311597121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527199

RESUMEN

Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.


Asunto(s)
Ecosistema , Moluscos , Humanos , Animales , Guyana Francesa , Plantas , Polen , Fósiles
2.
Glob Chang Biol ; 29(4): 969-981, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36413112

RESUMEN

Global warming threatens the viability of tropical coral reefs and associated marine calcifiers, including symbiont-bearing larger benthic foraminifera (LBF). The impacts of current climate change on LBF are debated because they were particularly diverse and abundant during past warm periods. Studies on the responses of selected LBF species to changing environmental conditions reveal varying results. Based on a comprehensive review of the scientific literature on LBF species occurrences, we applied species distribution modeling using Maxent to estimate present-day and future species richness patterns on a global scale for the time periods 2040-2050 and 2090-2100. For our future projections, we focus on Representative Concentration Pathway 6.0 from the Intergovernmental Panel on Climate Change, which projects mean surface temperature changes of +2.2°C by the year 2100. Our results suggest that species richness in the Central Indo-Pacific is two to three times higher than in the Bahamian ecoregion, which we have identified as the present-day center of LBF diversity in the Atlantic. Our future predictions project a dramatic temperature-driven decline in low-latitude species richness and an increasing widening bimodal latitudinal pattern of species diversity. While the central Indo-Pacific, now the stronghold of LBF diversity, is expected to be most pushed outside of the currently realized niches of most species, refugia may be largely preserved in the Atlantic. LBF species will face large-scale non-analogous climatic conditions compared to currently realized climate space in the near future, as reflected in the extensive areas of extrapolation, particularly in the Indo-Pacific. Our study supports hypotheses that species richness and biogeographic patterns of LBF will fundamentally change under future climate conditions, possibly initiating a faunal turnover by the late 21st century.


Asunto(s)
Cambio Climático , Foraminíferos , Foraminíferos/fisiología , Arrecifes de Coral , Calentamiento Global , Temperatura , Biodiversidad , Ecosistema
3.
PeerJ ; 10: e12884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211360

RESUMEN

We present new observations on Jullienella foetida Schlumberger, 1890, a giant agglutinated foraminifer with a leaf- or fan-like test reaching a maximum dimension of 14 cm, that is common on some parts of the west African continental shelf. The test wall comprises a smooth, outer veneer of small (<10 µm) mineral grains that overlies the much thicker inner layer, which has a porous structure and is composed of grains measuring several hundreds of microns in size. Micro-CT scans suggest that much of the test interior is filled with cytoplasm, while X-ray micrographs reveal an elaborate system of radiating internal partitions that probably serve to channel cytoplasmic flow and strengthen the test. Jullienella foetida resembles some xenophyophores (giant deep-sea foraminifera) in terms of test size and morphology, but lacks their distinctive internal organization; the similarities are therefore likely to be convergent. Based on micro-CT scan data, we calculated an individual cytoplasmic biomass of 3.65 mg wet weight for one specimen. When combined with literature records of seafloor coverage, this yielded an estimate of >7.0 g wet weight m-2 for the seafloor biomass of J. foetida in areas where it is particularly abundant. The relatively restricted distribution of this species off the north-west African coast at depths above 100 m is probably related to the elevated, upwelling-related surface productivity along this margin, which provides enough food to sustain this high biomass. This remarkable species appears to play an important, perhaps keystone, role in benthic ecosystems where it is abundant, providing the only common hard substrate on which sessile organisms can settle.


Asunto(s)
Ecosistema , Foraminíferos , Agua , Océanos y Mares , Biomasa
4.
PLoS One ; 15(12): e0243481, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33284843

RESUMEN

Lagos Lagoon is among Africa's largest estuarine ecosystems, bordered by one of the fastest growing megacities in the world and the ultimate repository of contaminants carried in industrial, municipal and agricultural wastes. The high levels of pollutants have progressively deteriorated the water quality, adversely affected lagoon ecosystems, impacted the livelihood of the coastal population and pose serious risks to human health. Benthic foraminifera are excellent proxies and sensitive bioindicators of environmental disturbances but comprehensive studies on the structure, distribution, diversity and impact of pollution upon foraminiferal communities have not yet been conducted in the Lagos Lagoon. To demonstrate the potential of foraminifera as proxies of environmental perturbations, benthic foraminifera were investigated on a lagoon-wide basis. Lagos Lagoon comprises areas that range from low levels of direct impact to those of severely affected by various forms of anthropogenic disturbance. The goals of this study are to analyze patterns of distribution and species richness, to document foraminiferal community structures, and to identify taxa that track documented records of pollution in Lagos Lagoon sediments. Heat maps were generated from abundance records for selected species to illustrate environmental preferences and relative resistance levels to individual forms of anthropogenic disturbance. Sediments were analyzed for a range of physicochemical properties, via a multi-parameter sensor probe-device, including temperature, pH, depth and total dissolved solids (TDS). Quantitative analysis of 24 sediment samples yielded a total 3872 individuals of benthic foraminifera that belong to 42 species and 25 genera. They comprise 10 porcellaneous, 22 hyaline perforate and 10 agglutinated species. Ammobaculites exiguus, Ammotium salsum, Ammonia aoteana, Ammonia convexa and Trochammina sp. 1 have been found to be the most abundant species. For the first time, the complete present-day foraminifera fauna is illustrated here via scanning electron microscopy. The features recorded allow to assess the spatial effects of pollution upon foraminiferal assemblages on a lagoon-wide basis. The data generated may ultimately form the basis to assess the progressive deterioration of Lagos Lagoon ecosystems from cores by using benthic foraminifera as bioindicators of environmental perturbation.


Asunto(s)
Monitoreo del Ambiente , Foraminíferos/crecimiento & desarrollo , Agua Dulce/parasitología , Sedimentos Geológicos/parasitología , Análisis por Conglomerados , Ecosistema , Foraminíferos/aislamiento & purificación , Agua Dulce/análisis , Agua Dulce/microbiología , Sedimentos Geológicos/análisis , Sedimentos Geológicos/microbiología , Concentración de Iones de Hidrógeno , Nigeria , Análisis de Componente Principal , Análisis Espacial , Temperatura
5.
PLoS One ; 14(6): e0219015, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31251773

RESUMEN

Foraminiferal propagule banks occur in fine sediment fractions that contain small individuals of benthic foraminifera. These sediments include locally sourced juveniles and propagules, as well as allochthonous propagules that have dispersed from surrounding areas. Such propagules can remain viable even under unfavorable local conditions. When exposed to more favorable conditions, they may grow to adult stages. Accordingly, during environmental changes, propagule banks have the potential to function as species pools and allow quick assemblage reactions. The propagule method was designed to study responses of foraminiferal assemblages by exposing propagule banks to controlled conditions in the laboratory, an approach that is applicable to a variety of ecological questions. Therefore it is important to understand the nature and dynamics of propagule banks, including local and seasonal influences. To obtain insights into the composition of local propagule banks, we studied experimentally grown assemblages from two shallow-water lagoons on Corfu Island in western Greece, and compared the results with in situ assemblages. We sampled in spring and autumn of 2017 and experimental treatments included the use of different substrates in our experiments to account for potential effects on assemblage compositions. Results revealed that sediments from each lagoon contained a distinct propagule bank. We found abundant allochthonous taxa among specimens grown in all experimental treatments, indicating dispersal of propagules, and possibly also juveniles, from adjacent regions into both lagoons. The time of sampling had a significant effect on experimental assemblages, indicating that the composition of propagule banks can vary throughout the year. However, no significant differences were found in assemblages grown in different substrata, suggesting a stronger influence of water variables (e.g., temperature or salinity) on assemblage compositions. Moreover, the experimental set-ups favored small, fast-growing, sediment-dwelling species tolerant of relatively high organic content. Our findings highlight the potential of propagule banks as species pools and will help to refine and improve future applications of the method.


Asunto(s)
Monitoreo del Ambiente/métodos , Foraminíferos , Sedimentos Geológicos/química , Islas , Estaciones del Año , Biodiversidad , Grecia , Océanos y Mares
6.
Sci Rep ; 8(1): 8189, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844498

RESUMEN

Symbiont-bearing Larger Benthic Foraminifera (LBF) are ubiquitous components of shallow tropical and subtropical environments and contribute substantially to carbonaceous reef and shelf sediments. Climate change is dramatically affecting carbonate producing organisms and threatens the diversity and structural integrity of coral reef ecosystems. Recent invertebrate and vertebrate surveys have identified the Coral Triangle as the planet's richest center of marine life delineating the region as a top priority for conservation. We compiled and analyzed extensive occurrence records for 68 validly recognized species of LBF from the Indian and Pacific Ocean, established individual range maps and applied Minimum Convex Polygon (MCP) and Species Distribution Model (SDM) methodologies to create the first ocean-wide species richness maps. SDM output was further used for visualizing latitudinal and longitudinal diversity gradients. Our findings provide strong support for assigning the tropical Central Indo-Pacific as the world's species-richest marine region with the Central Philippines emerging as the bullseye of LBF diversity. Sea surface temperature and nutrient content were identified as the most influential environmental constraints exerting control over the distribution of LBF. Our findings contribute to the completion of worldwide research on tropical marine biodiversity patterns and the identification of targeting centers for conservation efforts.


Asunto(s)
Antozoos/fisiología , Biodiversidad , Arrecifes de Coral , Foraminíferos/fisiología , Animales , Carbonatos/metabolismo , Cambio Climático , Ecosistema , Océano Índico , Modelos Biológicos , Océano Pacífico , Simbiosis , Clima Tropical
7.
PeerJ ; 4: e2157, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27366652

RESUMEN

Raja Ampat is an archipelago of about 1,500 small islands located northwest off the Bird's Head Peninsula of Indonesia's West Papua province. It is part of the Coral Triangle, a region recognized as the "epicenter" of tropical marine biodiversity. In the course of a large-scale survey on shallow benthic foraminifera we have discovered one new genus and five new species of recent miliolid benthic foraminifera from the highly diverse reefal and nearshore environments. The new fischerinid genus Dentoplanispirinella is characterized by its planispiral coiling and by the presence of a simple tooth, that differentiate it from Planispirinella Wiesner. It is represented in our sample material by the new species Dentoplanispirinella occulta. The other four species described herein are Miliolinella moia, Miliolinella undina, Triloculina kawea and Siphonaperta hallocki. All new species are comparatively rare and occur sporadically in the sample material. Detailed morphological descriptions, scanning electron microscopy pictures of complete and dissected specimens as well as micro-computed tomography images are provided.

8.
PLoS One ; 10(12): e0145752, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26710320

RESUMEN

Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs is consistent with the disturbance-mosaic (microhabitat heterogeneity) hypothesis. Calculations of the FORAM Index (FI), a single metric index to assess reef vitality, indicate that all fore- and most back-reef environments support active carbonate accretion and provide habitat suitability for carbonate producers dependent on algal symbiosis. Lowest suitability values were recorded within the innermost bays, an area where natural and increasing anthropogenic influences continue to impact the reefs. The presence of habitat specific assemblages and numerical abundance values of individual taxa show that benthic foraminifera are excellent recorders of environmental perturbations and good indicators useful in modern and ancient ecological and environmental studies.


Asunto(s)
Foraminíferos/clasificación , Foraminíferos/aislamiento & purificación , Bahías , Biodiversidad , Arrecifes de Coral , Ecosistema , Foraminíferos/ultraestructura , Microscopía Electrónica de Rastreo , Polinesia
9.
PLoS One ; 8(4): e62182, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23620810

RESUMEN

The distribution of modern symbiont-bearing larger foraminifera is confined to tropical and subtropical shallow water marine habitats and a narrow range of environmental variables (e.g. temperature). Most of today's taxa are restricted to tropical and subtropical regions (between 30°N and 30°S) and their minimum temperature limits are governed by the 14 to 20°C isotherms. However, during times of extensive global warming (e.g., the Eocene and Miocene), larger foraminifera have been found as far north as 50°N (North America and Central Europe) as well as towards 47°S in New Zealand. During the last century, sea surface temperatures have been rising significantly. This trend is expected to continue and climate change scenarios for 2050 suggest a further increase by 1 to 3°C. We applied Species Distribution Models to assess potential distribution range changes of three taxa of larger foraminifera under current and future climate. The studied foraminifera include Archaias angulatus, Calcarina spp., and Amphistegina spp., and represent taxa with regional, superregional and global distribution patterns. Under present environmental conditions, Amphistegina spp. shows the largest potential distribution, apparently due to its temperature tolerance. Both Archaias angulatus and Calcarina spp. display potential distributions that cover currently uninhabited regions. Under climate conditions expected for the year 2050, all taxa should display latitudinal range expansions between 1 to 2.5 degrees both north- and southward. The modeled range projections suggest that some larger foraminifera may colonize biogeographic regions that so far seemed unsuitable. Archaias angulatus and Calcarina spp. also show an increase in habitat suitability within their native occurrence ranges, suggesting that their tolerance for maximum temperatures has yet not been fully exploited and that they benefit from ocean warming. Our findings suggest an increased role of larger foraminifera as carbonate producers and reef framework builders in future oceans.


Asunto(s)
Ecosistema , Foraminíferos/fisiología , Geografía , Agua de Mar/parasitología , Océanos y Mares , Filogeografía , Temperatura
10.
PLoS One ; 8(2): e54443, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405081

RESUMEN

Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.


Asunto(s)
Cambio Climático , Ecosistema , Foraminíferos/crecimiento & desarrollo , África , Fósiles , Mar Mediterráneo , Modelos Biológicos
11.
J Eukaryot Microbiol ; 55(3): 163-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18460153

RESUMEN

Larger symbiont-bearing foraminifera are prominent and important producers of calcium carbonate in modern tropical environments. With an estimated production of at least 130 million tons of CaCO(3) per year, they contribute almost 5% of the annual present-day carbonate production in the world's reef and shelf areas (0-200 m) and approximately 2.5% of the CaCO(3) of all oceans. Together with non-symbiont-bearing smaller foraminifera, all benthic foraminifera are estimated to annually produce 200 million tons of calcium carbonate worldwide. The majority of foraminiferal calcite in modern oceans is produced by planktic foraminifera. With an estimated annual production of at least 1.2 billion tons, planktic foraminifera contribute more than 21% of the annual global ocean carbonate production. Total CaCO(3) of benthic and planktic foraminifera together amounts to 1.4 billion tons of calcium carbonate per year. This accounts to almost 25% of the present-day carbonate production of the oceans, and highlights the importance of foraminifera within the CaCO(3) budget of the world's oceans.


Asunto(s)
Carbonato de Calcio/metabolismo , Eucariontes/metabolismo , Biología Marina , Animales , Ecosistema , Eucariontes/citología , Plancton/citología , Plancton/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...